
www.it-ebooks.info

C H A P T E R 2

51

Arduino for Robotics

With some of the basics of electricity, Arduino, and general robot building out of the way, we jump right
in to some of the specific interfacing tasks that are needed to complete the projects in this book. In
Chapter 1, the code examples use low-power components that can be connected directly to the Arduino
(LEDs, potentiometers, R/C receivers, button switches, and so on). This chapter focuses on how to
interface your Arduino to mechanical, electronic, and optical switches, as well as some different input
control methods, and finally some talk about sensors.

First we discuss the basics of interfacing relays, transistors, and motor-controllers to the Arduino.
We then discuss the various methods of controlling your Arduino—focusing on the popular methods of
wireless control. Lastly, I give you my two cents about the many different types of sensors available for
robotic use.

There are no code examples in this chapter, but the information presented is useful to understand
the interfacing methods, control types, and sensors used throughout this book. Let’s start by introducing
some switching components that can enable the Arduino to control high-powered devices.

Interfacing Arduino
Because the Arduino can supply only around 40ma of current through any one of its Output pins, it is
severely limited to what it can power by itself. A typical 5mm red LED requires about 30ma of current, so
the Arduino has no problem lighting it up to 100%—but anything more, and it will struggle. To use the
Arduino to control a high-powered device requires the use of an “amplifier.” Also called a “signal-
buffer,” an amplifier simply reproduces a low-power input signal, with a much higher output power to
drive a load.

A basic amplifier has an input and an output—the input is a low-power signal (like the Arduino) and
is used to drive the larger output signal that will power the load. A perfect amplifier is able to switch the
high-power signal as quickly and efficiently as the Arduino switches the low-power signal. In reality,
amplifiers are not perfectly efficient and some heat is dissipated in the switching process, which often
requires the use of a heat sink on the switching device and possibly a fan to remove heat (like the CPU in
your computer).

There are different types of amplifying circuits that can be interfaced with the Arduino depending
on the type of signal output used. For slow-switching signals using the digitalWrite() command, you can
interface the Arduino to a high-power relay. For fast-switching PWM signals using the analogWrite()
command, you must use a solid-state switch, which allows for full 0-100% digital output control. You can
also purchase a preassembled electronic speed controller and use the Arduino to provide the input
control signals.

First let’s talk about an electrically activated switch called a relay, which can conduct very large
amounts of current and can be controlled using the Arduino.

J.-D. Warren et al., Arduino Robotics

© John-David Warren, Josh Adams, and Harald Molle 2011

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

52

Relays

A relay is an electrical switch that uses an electro-magnetic solenoid to control the position of a
mechanical power contactor. A solenoid is similar to a motor because it uses a magnetic field to produce
physical movement of the solenoid cylinder—but instead of spinning like a motor output shaft, the
solenoid cylinder moves back and forth in a linear motion. Most relays are encased in a plastic or metal
housing to keep the moving parts free from outside interference and dust (see Figure 2-1).

Figure 2-1. Here you can see a variety of relays in small to large sizes. The three smaller relays on the

bottom row are called “signal” relays, meaning their contacts are rated for less than 2 amps of current. The

three relays on the top row are called “power” relays, ranging from 5 amp to 25 amp contact ratings. Lastly,

the mammoth relay on the far right is an automotive power relay, which is rated at 60 amps.

There are two parts to a relay: the solenoid and the contactor, and each is electrically isolated from
the other. These two parts can essentially be treated as separate (but related) parts of a circuit, because
each has its own ratings. The solenoid inside a relay has an electrical coil with a magnetic plunger that
provides the movement needed to flip the contactor switch on and off. The relay coil should have the
coil resistance listed as well as the operating voltage so that you can calculate how much current it will
consume when in use. The contactor in a relay is where the high-power signal is switched. The contactor
switch also has a voltage and current rating that tells you how much power you can expect the relay to
conduct before the contacts fail.

Types of Relays

Relays are available with several different operation types depending on your application, so it is useful
to understand how each type operates to make sure you get the right relay for the job.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

53

 Normally-Open (NO): This simply means that the two power contacts of the relay
are connected when the relay coil is turned on and disconnected when the relay
coil is turned off.

 Normally-Closed (NC): This is the opposite of Normally-Open; the power contacts
are connected when the relay is off and disconnected when the relay is on.

 Latching: This means that the contactor switch in the relay is not spring-loaded,
and it stays in whatever position it is placed into until the polarity is reversed to
the coil, which returns the contactor switch to its original position. This is
comparable to a standard home light switch—it stays on until you turn it off.

 Non-latching: This is the “normal” type of relay that we use for failsafe switches.
The relay contactor switch is spring-loaded and returns to the preset position
unless power is applied to the coil. This is comparable to a momentary button
switch—it stays on only while you press the button; otherwise, it springs back to
the off position.

Relay Configurations

In addition to having different operating types, relays can have their contacts arranged in various
configurations depending on the use. There are four common types of relays that we briefly discuss—
each of these relays has only solenoid coil, but a varying number of power contacts. Any of these relay
configurations can be Normally-Open or Normally-Closed as well as latching or Non-latching as
described.

 Single Pole, Single Throw (SPST): This type of relay uses one coil to control one
switch with two contacts—there are four total contacts on this relay (see Figure
2-2).

Figure 2-2. This SPST relay has one pole, with one contact (a simple switch).

 Single Pole, Double Throw (SPDT): This type of relay uses one coil to operate one
switch with three contacts (see Figure 2-3). The middle contact is for the load, the
upper contact is for Voltage1, and the lower contact is for Voltage2 (or GND). This
relay has five total contacts and is useful for switching one contact (Pole 1)
between two different sources (Throw 1-1 and 1-2) —also called a three-way
switch.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

54

Figure 2-3. This SPDT relay has one pole, with two contacts (a three-way switch).

 Double Pole, Single Throw (DPST): This type of relay uses one coil to operate two
independent SPST switches at the same time (see Figure 2-4). This relay has six
total contacts and is useful for switching two loads at the same time—the two
loads being switched can be associated (like a set of motor wires) or separate (like
a dual-voltage power switch).

Figure 2-4. This DPST relay has two poles, and each pole has one contact (a double switch).

 Double Pole, Double Throw (DPDT): This type of relay uses one coil to operate
two independent DPDT switches at the same time (see Figure 2-5). This relay has
eight total contacts and can be configured as an H-bridge circuit, which is
discussed in Chapter 3 (for controlling the direction of a load).

Figure 2-5. This DPDT relay has two poles, and each pole has two contacts (a double three-way switch).

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

55

Uses

Relays have the advantage of using thick copper contacts, so they can easily be used to switch high
currents with a relatively small amount of input current. Because the solenoid takes some time to move
the contactor, PWM does not work with a relay. The PWM signal appears to the relay as an Analog
voltage, which is either high enough to turn the relay coil on or it just stays off—but it is not generally a
good idea to use a PWM signal on a relay.

You can, however, use a relay to switch high-power loads using the Arduino—including AC and DC
lighting, motors, heaters, appliances, and almost anything else that uses electricity. The relay is
extremely useful in robotics, because it can both switch a high-power load and be controlled
electronically (and thus remotely), which opens many possibilities for its use. You can use a power relay
as an emergency power disconnect on a large remote-controlled robot or a remote power switch for an
electric motor or lights.

Using two SPDT (three-way) relay switches, we can control the direction of a DC motor. In Figure 2-
6, you can see that if both relay coils (control 1 and control 2) are activated, the upper motor terminal
will be connected to the positive voltage supply and the lower terminal will be connected to the negative
voltage supply, causing the motor to spin in a clockwise direction. If power is removed from both relay
coils, the upper motor terminal will be connected to the negative voltage supply and the lower terminal
to the positive voltage supply, causing the motor to spin in a counter-clockwise direction.

Figure 2-6. These figures show how a DC motor can be controlled using two SPDT relay switches (or one

DPDT relay switch).

Before we can use the relay, we need to calculate how much power is needed to drive the relay coil.
If the relay coil draws more current than 40mA that the Arduino can supply, an interface switch will be
needed to turn on the relay coil using the Arduino.

Calculating Current Draw

To determine the amount of current that a relay draws, you must first determine the coil resistance by
checking the relay datasheet. If this information is not available, you can measure the resistance with a

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

56

multi-meter. Using the coil resistance and voltage rating of the relay, use Ohm’s law to calculate the
current draw from the coil.

In Figure 2-7, you can see a sample of the datasheet from the Omron G5-CA series relays. As you can
see, the relay is available with three different coil voltages (5v, 12v, or 24v). The coil resistance for each
model is listed below along with the rated current. The 5v version of this relay coil has a rated current of
40mA, which is low enough to be powered by the Arduino without using an interface circuit.

Figure 2-7. This is a sample portion of a relay datasheet; you can see both the coil and contact ratings.

Even though this particular datasheet displays the rated current of the relay coil, some relays have
only the operating voltage listed. In this case, you must manually measure the resistance of the relay coil
using your multi-meter and then use Ohm’s law to calculate the current draw.

From the datasheet in Figure 2-7, we use Ohm’s law to verify the current draw for a 5v relay with a
coil resistance of 125 ohms.

V = I * R

I = V / R

I = 5v / 125 ohms

I = 0.040 amps (40mA) —The datasheet is correct!

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

57

Back-EMF Considerations

Remember from Chapter 1 that a relay coil (solenoid) is an inductive type load and produces a jolt of
Backwards Electro-Motive Force, anytime the solenoid is turned off. This Back-EMF can severely
damage electronic switching components that are not protected with a standard current rectifying
diode, like the 1n4004 diode used in Figure 2-8. The diode is placed across the terminals of the load (in
this case, the relay coil) to prevent the Back-EMF from damaging the Arduino output pin.

Figure 2-8. This schematic shows the use of a diode around the relay coil to protect the Arduino output pin

or other switching device from Back-EMF produced by the relay coil.

Although the relay in Figure 2-7 can be driven directly by the current available from the Arduino,
most power-relays require a bit more than 40mA to turn on. In this case, we need a signal interface
switch to provide power to the relay coil using the Arduino. To do this, we first need to discuss solid-
state (electronic) switches.

Solid-State switches

A solid-state switch is one that switches an electrical load using doped silicon chips that have no moving
parts. Transistors, Mosfets, photo-transistors, and solid-state relays are all examples of solid-state
switches. Because solid-state electronics have no moving parts, they can be switched much faster than
mechanical ones. You should check the manufacturer’s datasheet for the part you are using, but PWM
signals can typically be applied to these switches to provide a variable output to the load device.

There are two places that we can put a switch in the circuit to control power to the load. If the switch
is between the load and the positive voltage supply, it is called a high-side switch. If the switch is
between the load and the negative voltage supply, it is called a low-side switch, as shown in Figure 2-9.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

58

Figure 2-9. Here you can see the difference between a high-side and low-side switch.

Transistors

A transistor is an electronic switch that uses a small input signal to switch a large output signal, using a
common voltage reference. Transistor switches differ from normal switches (like relays) because they
cannot be placed just anywhere in the circuit. A low-side switch must use a negatively doped transistor,
whereas a high-side switch must use a positively doped transistor.

There are three common types of transistors that we use: the Bipolar Junction Transistor (BJT), the
Metal-oxide Semi-Conductor Field Effect Transistor (MOSFET), and the photo-transistor. All of these
devices are transistor (electronic) switches and operate as such, but each is activated using a different
means. The BJT is activated by supplying a specific amount of electrical current to its base pin. The
MOSFET acts like a BJT, but instead of current, you must supply a specific voltage level to the MOSFET
gate pin (usually 5v or 12v). The photo-transistor is the most different of the three, because this
transistor is not activated by an electrical signal, but by light. We can interface all three of these types of
transistors directly to the Arduino.

All types of transistors have a voltage and current (amperage) rating in their datasheet—the voltage
rating should be strictly adhered to, because going over this limit will likely destroy the transistor. The
current rating should be used as a guide to determine at what point the switch becomes unusably hot. As
mentioned, you can install a heat sink and cooling fan to remove heat from the transistor, which
increases its current rating.

Bipolar Junction Transistor (BJT)

The most common type of transistor, the BJT, is a current-driven amplifier/switch whose output current
is related to its input current, called “gain.” It is usually necessary to use a current-limiting resistor
between the Arduino and BJT transistor to keep it from receiving too much current and overheating.
Transistors also have no diode protection in case of Back-EMF from an inductive load, so if driving a
motor or relay solenoid, you should use a protection diode as shown in Figure 2-10. If no Back-EMF

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

59

protection diode is used, the Arduino output pin can potentially be damaged if the transistor switch is
harmed.

A basic BJT has three pins: the Base (input), Collector (output), and Emitter (common). The emitter
is always connected to either the positive or negative voltage supply (the polarity depends on the type of
transistor) and the collector is always connected to the load. The base pin is used to activate the switch,
which connects the emitter and collector pins together. There are two types of BJT transistors that are
labeled by the arrangement of the three doped silicon layers on the semi-conductor chip.

 Positive Negative Positive (PNP): Intended to be used as a high-side switch, the
emitter of a PNP transistor connects to the positive voltage supply, the collector
connects to the load, and the base is used to activate the switch. To turn this
transistor off, its base pin must be equal to its emitter pin (positive voltage supply,
or simply remove power to the base pin). Turning this transistor on is counter-
intuitive because you have to apply a negative current, or a 0v (GND) signal to the
base pin.

 Negative Positive Negative (NPN): Intended to be used as a low-side switch, the
emitter of an NPN transistor connects to the negative voltage supply (GND), the
collector connects to the load, and the base is used to activate the switch. To turn
this transistor off, its base pin must be equal to its emitter pin (negative voltage
supply). This transistor is turned on by applying a positive current to the base pin
(see datasheet for specific transistor rating).

Figure 2-10. This schematic shows a BJT used as a low-side switch to drive an inductive load (motor) with

a Back-EMF protection diode around the switch. Notice that the transistor is driven through a current-

limiting resistor (R1).

Most BJTs require logic-level signals (+5v), to be applied to the base pin in order to activate the
switch. Because a BJT is current-driven; when power is removed from its base pin the transistor quickly
turns off. The current needed to switch on different transistors varies, but we will only use transistors

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

60

that can be driven at levels provided by the Arduino. The common 2n2222a NPN transistor can be fully
switched on with only a few milliamps of current and it can switch nearly 1 ampere, so it can be used as
a simple low-side amplifier switch. The 2n2907a is the PNP counterpart to the 2n2222a that is commonly
used as a simple high-side switch. Both of these parts are available at Radio Shack, Sparkfun.com, and
Digikey.com and are inexpensive (less than $1 each).

Mosfets

A MOSFET is a type of transistor that is voltage-driven instead of current-driven like the BJT. This type of
switch is also capable of extremely high PWM speeds and typically has very low internal resistance,
making them ideal for use in motor-controllers. Mosfets usually include an internal protection diode (as
shown in Figure 2-11) to isolate the output voltages from the input signal and protect from Back-EMF
produced by the load, so it is generally acceptable to interface the Arduino directly to a MOSFET switch;
this is one less part that must be added into the circuit.

Figure 2-11. This schematic shows a MOSFET switch (with built-in diode) used as a low-side switch to

drive an inductive load (motor). Notice that there is no current-limiting resistor needed, but instead a

pull-down resistor (R1) is used to keep the MOSFET switch turned off when not used.

A MOSFET transistor is similar to a BJT transistor because they have corresponding pins and types.
The MOSFET pins are labeled Gate (input), Drain (output), and Source (common), which correspond to
the BJT transistors Base, Collector, and Emitter, respectively (see Figure 2-12). Also, a MOSFET is not
labeled as NPN or PNP, but rather N-channel or P-channel to denote its mode of operation. For
practical purposes, these terms are interchangeable. Because MOSFET switches are voltage-driven and
consume very little current, it is not necessary to use a current-limiting resistor in series with the gate
pin of a MOSFET (as with a BJT), but it is good practice to use a resistor from the gate to source pin (see
R1 in Figure 2-11) to fully turn the switch off when not in use.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

61

Figure 2-12. Although they might physically look the same, the BJT (transistors) on the left are current

driven, and the MOSFETs (transistors) on the right are voltage driven. Below each transistor, the pins are

labeled—notice that the similar transistor packages have corresponding pins.

Logic-Level vs. Standard

A normal MOSFET requires around 10v applied to the Base pin to fully turn on. Because driving anything
above 5v with an Arduino requires using a level-shifter or amplifier, we use what is called a logic-level
MOSFET for direct integration. A logic-level MOSFET can be turned on with a 5v “logic level” signal,
which can be easily interfaced to the Arduino. Remember that a MOSFET requires a specific voltage level
to be activated, but little current.

Mosfets are also sensitive to excessive gate-to-source voltages. If the limit is exceeded for even a
second, it can destroy the MOSFET, so care should be taken to work within the voltage limits of the
MOSFET. The maximum voltage that can be applied to the gate pin is listed in the datasheet as the “Gate
to Source Voltage” or “Vgs” —this number is usually between 18vdc and 25vdc.

To drive a standard gate MOSFET, there are many different MOSFET-driver ICs that use logic-level
input signals and a secondary power source (usually 12v) to send the amplified output signal to the
MOSFET gate pin. Many MOSFET drivers are intended to provide the MOSFET gate pin with large
amounts of current very quickly to allow for high frequency PWM switching speeds. Because of the
higher PWM frequencies available with a high-current driver, we use MOSFET driver ICs in several of the
projects in this book.

Mosfet Capacitance

Mosfets have tiny capacitors attached to their gate pins to maintain the voltage present at the gate. The
capacitor charge enables the MOSFET to stay activated, even after the power is removed from the gate
pin. Each time the MOSFET is switched, the gate capacitor must fully charge and discharge its current.
For this reason, it is a good idea to ensure that the gate is forced to its off state by using a “pull-down”
resistor to drain the capacitor when not actively powered by the Arduino (see R1 in Figure 2.11). Using a
10kOhm pull-down resistor from the gate pin to the source pin (gate to GND on n-channel, gate to VCC
on p-channel) will be sufficient to keep the mosfet turned off when not in use.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

62

As the PWM frequency that is applied to the MOSFET switch increases, the time allowed for the gate
capacitor to charge and discharge decreases. As this happens, the gate-capacitor will require more
current from the driver to fully charge and discharge in the shorter amount of time. If the current
available from the driver is not sufficient to fully charge and discharge between switching cycles, the gate
will be left in a partially conducting state, which can result in excess heating.

Saying that a MOSFET needs a lot of available current to switch quickly might seem confusing,
because MOSFETs require a specific voltage to turn on and typically very little current. Although the
40mA that the Arduino PWM output pin can supply is plenty of current to fully switch a MOSFET on or
off slowly, it is not enough to fully charge and discharge the MOSFETs gate-capacitor at high PWM
frequencies where the MOSFET capacitor needs to be fully charged and drained 10,000 to 32,000 times
per second!

Using a MOSFET driver IC (specialized signal-buffer) is the best way to drive a MOSFET switch
because it can provide much more current during each switching cycle than the Arduino is capable of. A
MOSFET driver can deliver enough current to the MOSFET to completely charge and drain the gate
capacitor even at high PWM frequencies, which is important to reduce heat that is generated in the
switch when it is not driven efficiently. You can also omit the pull-up or pull-down resistors from the
gate pin when using a MOSFET driver to control a MOSFET—instead you should use a pull-down
resistor at each input pin on the MOSFET driver IC, being driven from an Arduino PWM output pin.

On-State Resistance—Rds(On)

One of the most important properties of a MOSFET is the internal resistance between its Drain and
Source pins (Rds) when the switch is on. This is important because the resistance of the switch
determines the amount of heat that it will create with a given power level. We can determine the
maximum Rds(On) value by checking the manufacturer’s datasheet. The maximum power that is
dissipated is determined using the Rds(On) resistance and the continuous current (in amps) that will
pass through the switch.

Calculating heat using Rds(On) and amperage of DC motor:
How much total power will be passed through a MOSFET with an Rds(On) = 0.022 ohms (22

milliohms) and a continuous current draw of 10 Amperes? Use the Ohm’s law pie chart from Figure 1-3
in Chapter 1—we want to know the heat produced in Watts, and we know the resistance of the MOSFET
and the continuous current level passing through the circuit. So we need to use the formula: Watts =

Current x Resistance.

W = I * R

W = 10 amps * 0.022 ohms

W = 100 amps * 0.022 ohms

W = 2.2 watts

This means that a single MOSFET with an Rds(On) = 0.022 ohms dissipates 2.2 watts if you try to
pass 10 amperes through the switch. In my experience, dissipating more than 2 watts from a MOSFET in
the TO-220 package results in excessive heating of the MOSFET. Any time more heat dissipation is
needed, it is a good idea to add a heatsink or cooling fan to reduce the operating temperature and get rid
of more heat. A good heat sink and fan can greatly increase the amount of power (or heat) allowed to

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

63

safely pass through the MOSFET. If cooling methods do not suffice, you can arrange multiple identical
MOSFETs in a parallel circuit to multiply the amount of current the switch device can handle. If you
place multiple MOSFETs in parallel, it still operates only as one switch because they are opened and
closed simultaneously, and their common pins are connected.

Parallel Mosfets

One of the most useful features of a MOSFET is the capability to arrange multiple switches in parallel for
increased current capacity and decreased resistance. This is done by simply connecting the Drain
terminals together and the Source terminals together (see Figure 2-13). The Gate terminals should be
driven by the same control signal, but each MOSFET should have its own gate resistor to divide the total
available current equally to each MOSFET used in parallel—these resistors can be a very low value from
10 ohms to 330 ohms.

Figure 2-13. Three MOSFETs (Q1, Q2, and Q3) are arranged in a parallel circuit (all like pins tied together)

to allow three times the current flow and a third of the resistance as using only one MOSFET. The resistors

(R1, R2, and R3) are in place only to evenly distribute the available current from the Arduino, but are not

required.

■ Note The voltage limits of the MOSFETs do not change even when using the parallel method. If the voltage limit

is exceeded, you will likely blow up every MOSFET that is connected!

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

64

The total current that can be transferred through a parallel set of MOSFETs is equal to the amount of
current that can be passed by a single MOSFET, times the number of MOSFETs used in parallel. In
addition, the total resistance of the parallel set of MOSFETs is equal to the Rds(On) rating divided by the
number of MOSFETs in the parallel circuit. This means that by using two MOSFETs in parallel, you
decrease the resistance by half—and when the resistance is decreased, so is the heat dissipation.

Photo-Transistors

A photo-transistor operates like a standard NPN transistor, except that it is activated using infrared light
from an LED instead of electrical current. These transistors are commonly used for line-following robots
to detect reflective light differences on colored surfaces. If the infrared emitter and detector are enclosed
in an IC package, the device is an optical-isolator, because the low power device (infrared emitter) is
electrically isolated from the high power switch (photo-transistor), enabling the input and output
circuits to be separated (they have different power sources).

This type of switch is like a transistor/relay hybrid; it has electrical isolation like a relay, but the
switch is interfaced as a transistor; the unique feature that you get with a photo-transistor is an
electrically isolated switch with PWM switching capabilities. In Figure 2-14, the base is driven using light
from an infrared LED connected to the Arduino (using current-limiting resistor R1), the collector (pin 4)
is connected to the negative load terminal (as a low-side switch), and the emitter (pin 3) is connected to
the GND supply.

Figure 2-14. This optical-isolator (IRED and photo-transistor pair) is used as a low-side switch to drive a

motor. Because the only thing connecting the Arduino to the Load is a beam of infrared light (no common

GND signal), it is not required that you use a protection diode on the switch (though it is recommended).

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

72

$25 each. An adapter board is needed because the pin spacing of each Xbee radio is 0.05 inch, which is
not compatible with a breadboard or perforated prototyping boards, which use 0.1 inch spacing. In
Figure 2-20, you can see two standard Xbee radios (Sparkfun.com part# WRL-08665), a Sparkfun Xbee
Explorer Regulated breakout board (Sparkfun.com part# WRL-09132) to connect to the Arduino, and a
Sparkfun Xbee Explorer USB breakout board (Sparkfun.com part# WRL-08687) for connecting to your
computer. The makers of the Xbee radios have also created a software program called X-CTU, which is
used to change settings on the Xbee radios while connected to your computer—the X-CTU software is
free to use, but currently works only in Windows.

Sensor Navigation
Although creating a control link that converts user input into robotic output can be extremely useful,
there are some tasks that require the robot to make decisions of its own without consulting a human.
The first three robotic projects in this book (chapters 4, 5, and 7) use some type of external awareness to
direct the robot to its destination without using any user guidance.

Believe it or not, you are actually an autonomous (self-controlled) being that uses several different
“sensors” to help determine the environment around you. Your eyes, ears, nose, hands, and mouth each
have their own sensation that your brain can interpret into some form of intelligence. From these
sensors, your brain is able to make informed decisions about how your body should proceed and keep
you safe from harm. Along the same lines, a robotic sensor is a device that is attached to a robot to gather
information about its surrounding area. Without sensors, the robot would not have any way of knowing
what is around it or how to proceed. This is the easiest way to add intelligence to your bot.

There are many types of sensors and each reads the environment differently, so it is common to add
several types of sensors to one robot to effectively navigate around obstacles and gather important
information. A sensor can measure light, distance, proximity, heat, gas, acceleration, angle, humidity
and moisture, contact, and rotational position (among others). We focus on the sensors that are readily
available and offer the most versatility for the price.

Contact Sensing

The most simple type of sensor that can be implemented is the contact switch, which simply tells the
robot whether or not it is touching something. This type of sensor is commonly called a “bump-switch”
and is used on the iRobot Roomba robotic vacuum cleaner to determine when it has bumped into a wall
or other object. The main caveat of this sensor type is that it requires the robot to make physical contact
with an object before it is detected.

Bump Switch

The bump switch is a simple form of sensor because it consists of as few as two electrical contacts (see
Figure 2-21). If the contacts are touching, the switch is closed; otherwise, it is open. We use this form of
switch as a method of telling the robot when it has run into something. If we place them at several spots
on the bot, we not only know when the bot has bumped into something, we can also determine the best
direction to travel to keep from hitting the same objects again.

This type of sensor is also useful as an over-travel switch. These are commonly installed on garage-
door openers. When the door opens to a certain point, it touches the over-travel switch and the main
board receives a command to stop the lifting motor. This is how it knows where to turn it off.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

73

Figure 2-21. A typical tactile bump-switch with lever

This type of sensor (or any switch) is read as a digital input using the digitalRead() command (see
Listing 1-1 in Chapter 1).

Distance and Reflection Sensing

Range detection is useful when trying to determine whether an object is near without the robot having to
touch it. A good range detector can calculate the distance from an object with accuracy down to the
nearest inch. Range detection sensors use reflected sound or light waves to measure the distance
between the sensor and any obstacle within range. Different range detection methods result in different
effective ranges, accuracy, and prices. Range detection sensors can have an effective sensing range from
1 centimeter to 25 feet and cost anywhere from just a few dollars for an IR range finder to several
thousand dollars for a Laser range finder. We use infrared detection for Linus in Chapter 4 and ultrasonic
range finders on Wally in Chapter 7.

IR Sensor

IR detectors use an infrared emitter to send out IR light “packets” and a detector to check for reflections
of that light that have bounced off any nearby objects. By measuring the amount of time that the light
takes to return to the detector, the sensor can determine the distance from that object. IR finders can
detect objects at distances up to 5 feet away—use an ultrasonic range finder for farther distances. The
Sharp GP2 series of infrared proximity sensors are available at Sparkfun.com (part# SEN-08958) for
under $15 and can be used for short-range object detection up to 5 feet (see Figure 2-22).

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

74

Figure 2-22. This is the Sharp GP2 IR finder (Sparkfun.com part# SEN-08958).

A simple infrared emitter and detector pair can be used at close ranges (under 3 inches) to
determine the approximate reflectivity of a surface to infrared light. These simple IR emitter and
detector pairs are the basis for the line-following robot in Chapter 4. The emitter and detector are
mounted side by side and facing the same direction. The emitter is constantly sending a stream of
infrared light toward the ground, whereas the detector is constantly reading the reflections of the light
that is bouncing off the ground.

We use a piece of reflective tape as a guidance track for the bot to follow. As the bot moves away
from the reflective tape, the IR sensors on each side begin to receive less IR light and therefore adjust the
motor outputs to keep the bot centered on the tape. Using this simple guidance scheme, we can easily
modify the path that the bot will follow by altering the path of the reflective tape. There are several
different types of infrared emitter and photo-transistor packages that work for a line-following robot (see
Figure 2-23).

Figure 2-23. These are three different types of infrared emitter and detector pairs. The IR pair on the far

right is the type used in Linus, the line-following robot from Chapter 4. These sensors range in price from

$1 to $3 each from Digikey.com.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

75

■ Note Many household appliances that use a remote control contain a useful IR receiver like the one you can find

at Radio Shack or Digikey. If you happen to have a broken VCR, DVD player, TV, or stereo that you don’t mind

dismantling, you can de-solder the IR sensor from the PCB and save a few bucks. They typically only have three

pins: +5v, GND, and Signal.

Ultrasonic Range Finder

The ultrasonic range finder uses high frequency sound waves that are reflected off nearby objects to
calculate their distance. Some ultrasonic sensors require a microprocessor to both send and receive a
signal from the sensor, whereas other sensors calculate the distance within the sensor and have a
proportional output signal that is easily read by the Arduino.

Ultrasonic range finders are available in a variety of beam angles that determines the width of the
detectable area. A narrow beam angle is better suited to detect objects farther away, whereas a broad
beam angle better detects objects at short distances. These sensors are typically between $30–50 and can
be easily read by the Arduino.

The Maxbotix brand of ultrasonic range finders have built-in processing that enables it to output
independent serial, analog, and PWM signals at the same time to increase interfacing flexibility (see
Figure 2-24). These range finders accurately measure distances from about 6 inches to 25 feet, and are
well suited for obstacle avoidance and detection on robots. I prefer to use this brand of ultrasonic range
finder because it is reliable and easy to interface to the Arduino using any of the three built-in output
signals.

Figure 2-24. The MaxBotix LV-EZ0 ultrasonic range finder with an effective range of 6 inches to 25 feet

(Sparkfun.com part# SEN-08502)

Laser Range Finder

This type of range finder uses a laser to scan the objects around it, much like a laser scanner at the
grocery store checkout. A laser range finder can have a viewing angle of up to 240 degrees, giving it a

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

76

much wider view of its surroundings than other sensors. Each time the laser makes a rotation, it takes
distance readings at set intervals. When the rotation is complete, the signal is compiled to create a
snapshot of the surrounding area. Although this sensor has advanced features, the maximum detection
range is around 15 feet and they are expensive (usually costing around $1,000). Until the price comes
down a bit, we won’t test any of these units.

Orientation (Positioning)

There are several different sensors that can determine one or more aspects of a robot’s position or
orientation. A GPS sensor can tell you where the sensor is on a map using latitude and longitude
coordinates, whereas an accelerometer and gyroscope can tell you the angular position (tilt) or
rotational speed of your robot. Using these sensors, we can create an auto-leveling platform for a Segway
type robot or upload a set of GPS coordinates for a robot to navigate to.

Accelerometer

An accelerometer measures gravitational force or acceleration. By tilting an accelerometer along its
measured axis, we can read the gravitational force relative to the amount of tilt. Accelerometers are
available with up to three axis of sensing and can be directly interfaced to the Arduino with an Analog
output signal. Many devices currently use accelerometers for input control, shock detection,
stabilization platforms, and auto-leveling or tilt interfaces—you can find these devices inside of digital
cameras, cell phones, laptop computers, and Nintendo Wii controllers to name a few.

Most accelerometers available today are small surface mount components, but there are many
different breakout boards that have the sensor and all necessary filtering components (resistors and
capacitors) soldered into place, so you can easily interface them to an Arduino. Sparkfun.com has a large
selection of these “Arduino-ready” sensor boards in different configurations ranging from $20 to $50.

There are three axes that can be measured by an accelerometer and they are labeled X, Y, and Z,
which correspond to the roll, pitch, and yaw respectively (see Figure 2-25). A single axis accelerometer
measures either the X or Y axis, a dual axis accelerometer measures both X and Y axes, and a triple axis
accelerometer measures all three axes. Each measured axis represents a separate Degree of Freedom
(DOF) from the sensor—thus a triple axis accelerometer might be labeled as 3 DOF.

Figure 2-25. This figure shows the three axes of rotation: roll, pitch, and yaw with their corresponding

accelerometer symbols X, Y, and Z.

Accelerometers are used for measuring gravitational changes, but they are also extremely sensitive
to vibrations and sudden movements or shocks, which can cause the output signal to become distorted.

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

80

Current Sensor

A current sensor is used to measure the amperage passing a given point at a given time. If either motor
draws an excess amount of current, we can program the Arduino (which controls the motor-controller)
to stop driving that motor for a specified amount of time (1–2 seconds) to keep from overheating. By
protecting the motor-controller, it is far less likely to fail.

There are several types of current sensors, but I prefer to use a current sensor IC, like the ACS-712 (5
amp) or ACS-714 (30 amp) from Allegro MicroSystems (Figure 2-29). Although only available as an 8-
SOIC (Small Outline IC) surface mount package, it is easily interfaced to both the Arduino and a motor.
The IC only needs +5v and GND signals to begin outputting an analog voltage at the VOUT pin, which is
easily read using the Arduino on any analog input pin—you can even use the Arduino regulated +5v
supply to power the current sensor IC.

Figure 2-29. The ACS-712 bi-directional current sensor can be used in series with one of the load terminals

to measure the amperage level. It can easily be read using an Analog input on the Arduino.

In Figure 2-30, you can see a simple schematic depicting how you might connect the ACS714
current sensor to your Arduino. The current sensor IC needs a 5v power supply and a bypass capacitor
connected from the filter pin to GND. You must then route at least one of the motor supply wires
through the current sense pins of the sensor (as shown in Figure 2-30).

www.it-ebooks.info

CHAPTER 2 ARDUINO FOR ROBOTICS

81

Figure 2-30. A simple schematic for the ACS-712/714 current sensor IC in a circuit

In Chapter 8: The Explorer-Bot, we use the ACS-714 bi-directional 30-amp current sensor (big
brother to the ACS-712 shown in Figure 2-29) to sense the current passing through either drive motor.
Using the Arduino to monitor the analog output voltage of the current sensor, we can tell the Arduino to
stop sending motor commands if the reading from the current sensor is above a certain level—this is
called “over-current” protection and can keep a motor-controller from destroying itself.

Summary
This chapter briefly discussed the various interfacing and control methods that are used in this book, as
well as some of the different sensors.

Relays are reliable and easy to interface, but produce Back-EMF and must use a protection diode to
drive directly from the Arduino. Transistors are available in several forms and can be driven directly by
the Arduino, but must be specifically placed as either a high-side or low-side switch. ESCs are available
for those who do not want to build their own circuits, but typically cost more to buy than building a
similar motor-controller using transistors or relays.

We then talked about some various control methods using both wired and wireless links, including
infrared controllers and radio control. Radio control is implemented using a variety of different
methods, the most common of which is 2.4GHz. We use 2.4GHz hobby radio control systems and Xbee
wireless serial links to both control and monitor robotic functions. Wireless radio control is used on the
Explorer-bot, Lawnbot, and Battle-bot projects in this book.

www.it-ebooks.info

CHAPTER 3 LET”S GET MOVING

91

The stroke of a linear actuator refers to the maximum distance it can extend. The speed of the
actuator tells you how fast it will travel, usually rated in inches/second. The power of the actuator is
determined by the power rating of the motor that is driving it and is usually rated by the maximum load
capacity in pounds that the actuator can lift. It is typically fine to use a relay to control a linear actuator
for simple On/Off control, unless you need extremely precise control in which case you should use a
motor-controller.

Calculating Power

Because the amperage of a motor varies depending on the load, most DC motors list the voltage level at
which it can safely operate. Although DC motors are usually forgiving and can be slightly over-powered
without causing problems, an excess voltage level can burn up the motor coil.

As discussed in Chapter 1, the amperage that is consumed by a motor is dependent on the voltage
level and the internal resistance of the motors coil. After the operating voltage is decided, you can
measure the motor’s coil to determine its resistance, and lastly use the voltage and resistance to
calculate the amperage of the motor. With the amperage and voltage known, you can select a properly
sized motor-controller for the motor.

Driving

The DC motor is the simplest motor to power; apply a positive signal to one wire and a negative signal to
the other and your motor should move, as shown in Figure 3-8. If you swap the polarity of the wires, the
motor will spin in the opposite direction.

The speed of the motor is dependent on the positive supply voltage level—the higher the voltage,
the faster the motor shaft spins. The power of the motor is its capability to maintain its speed, even
under a load and that is determined by the amperage available from the power source—as the workload
of the motor increases, more amperage is drawn from the batteries.

Figure 3-8. To power a DC motor, simply connect one wire to the Positive supply and the other wire to the

Negative supply.

Some of our robots have powerful motors that can operate at up to 24vdc—if the entire 24 volts is
applied to the motor all at once, it is likely to spin the tires or pop a wheelie! We don’t want to break any
of our equipment or hit anyone nearby because our bot launches when we turn the motors on, so we will
use a motor-controller to vary the voltage to the motor from 0v to the power supply voltage (in most

www.it-ebooks.info

CHAPTER 3 LET’S GET MOVING

92

cases, 6v, 12v, or 24v). This enables the bot to start slowly and work its way up to full speed, which causes
less strain on the batteries during start-up and provides more precise control.

We can vary the voltage level to the motors by using a pulse-width modulation PWM signal to
determine the output duty-cycle, or percentage of On time. Because using PWM means that the output
is either fully on or fully off, the motors receive as much amperage as the power supply allows for the
given duty-cycle, and the power can be varied from 0% to 100% for full speed control.

Finding the Right Motor

DC motors are in virtually any device that has moving parts—you can harvest useful DC motors from old
cassette tape players, VCRs, toys, and cordless tools. Salvaging a DC motor is usually easy because they
are rarely ever soldered to a printed circuit board (PCB), so you simply unplug the wires and remove any
fasteners that are holding the motor in place. If the wires are soldered into place, just cut them leaving as
much wire connected to the motor as possible (unless you plan on soldering your own wires to the
motor terminals). Once removed, you can test the motor by powering it with a 6v or 12v battery
(depending on its size).

As previously mentioned, gear-motors reduce the speed of a motor shaft to a usable RPM for driving
a robot. When salvaging parts, you might come across a motor assembly that has plastic or metal
reducing gears attached to the motor; you can re-use these gears and create your own makeshift gear-
motor. Gear-motors and gear assemblies can also be found at surplus and commercial websites.

Surplus:

 www.allelectronics.com

 www.goldmine-elec.com

 www.alltronics.com

Commercial:

 www.Sparkfun.com

 www.trossenrobotics.com

 www.pololu.com

 www.superdroidrobots.com

 www.robotmarketplace.com

You can find 12v automotive windshield-wiper motors at your local junkyard that can be used as
drive motors for a medium-sized bot. You can also find powerful motors at your local thrift-store by
looking for cordless drills that have bad battery packs or cosmetic blemishes, but working motors and
gear boxes.

The H-Bridge
When driving a DC motor in only one direction, we do not need any special circuitry to switch the motor
on or off; a simple switch in series with one motor terminal will do. But to reverse the polarity of the
voltage of the motor terminal, we need a half-bridge circuit or push-pull driver. This circuit uses two
switches (S1 and S3 as shown in Figure 3-9) to provide a path from one motor terminal to either the
Positive voltage supply or the Negative voltage supply (Ground). By using only one of these switches at a

www.it-ebooks.info

CHAPTER 3 LET”S GET MOVING

93

time, a short-circuit is avoided—the other motor terminal is permanently connected to either VIN or
GND

Figure 3-9. Various half-bridge states

The bridge is used to route the correct polarity to the motor terminals at the appropriate time. To
avoid a short-circuit, you should never close both switches on the same side of the bridge (both the
positive and negative) at the same time (see Figure 3-12). To control the polarity to both motor
terminals, we need two identical half-bridges arranged in an H-bridge (see Figure 3-10).

Figure 3-10. Notice how the circuit looks like the letter “H,” which is why they call it an H-bridge.

For the motor to spin, the battery current must flow from the Positive supply, through the Motor,
and to the Ground supply to complete the circuit. To make this happen we must open one switch from
each side of the bridge, one Low-side and an opposite High-side—that means we can either turn on S1
and S4 to go Forward, or we can turn on S2 and S3 to go in Reverse. The direction of the current flow
through the motor terminals determines the direction that the motor spins. We can manipulate the flow
of the current by closing the two corresponding switches together to give us directional control of the
motor. If all four switches are open (disconnected), the motor is coasting, meaning there is no path for
the current to travel.

Generating a Brake

There is also an acceptable condition called electric-braking, which refers to connecting both motor
terminals to the same voltage supply—as opposed to leaving them disconnected. Because most DC
motors act as a generator if you spin the motor shaft, by connecting both terminals to either the Positive
supply or the Ground supply, we are essentially trying to force the generated electricity back into the

www.it-ebooks.info

CHAPTER 3 LET’S GET MOVING

94

same supply (see Figure 3-11). This results in the motor resisting to spin—that is, it will keep the motor
shaft from moving by forcing opposing voltages into the same supply. We can tell the Arduino to keep
both Low-side switches closed to form an electric brake when the bot is in Neutral to make sure it does
not roll down a hill or move without being commanded. Alternatively, if all switches are left open in
Neutral (coasting), there will be no resistance to the motor generating electricity—so if it is on a hill, it
will roll.

Figure 3-11. Acceptable H-bridge states

Figure 3-12. Shoot-through H-bridge states—bad!

Implementation

To create an H-bridge circuit, we simply need four switches—two of the switches must control the path
of the current from the positive supply to each motor terminal, and the other two must control the path
of the current from the negative supply to each motor terminal. These switches are labeled as S1, S2, S3,
and S4 in the illustrations. We can use any type of switch that we want in the H-bridge, depending on
our application. Relay switches work fine for single speed (On/Off) operation, whereas bipolar
transistors or mosfets are more appropriate for full-speed control using PWM.

If you are making a smaller H-bridge with BJT transistors, you should include protection diodes
from the drain to source of each transistor to protect them from Back EMF. Mosfets have built-in “body
diodes” that are capable of handling the same voltages and amperage as the mosfet itself, so these are
usually safe to interface directly to the Arduino.

www.it-ebooks.info

CHAPTER 3 LET”S GET MOVING

95

There are four different homemade approaches to building an H-bridge circuit that we discuss, each
with their own benefits and drawbacks. We start with the most simple implementation and progress to
the most complex.

Method 1: Simple Switches

We can make a full H-bridge using (2) three-way (SPDT) switches from the hardware store, a DC motor,
and a 9v battery. This simple bridge has built-in short-circuit protection so it cannot be commanded
into a shoot-through state. It can, however, be placed into any acceptable H-bridge state: forward,
reverse, electric brake (positive), electric brake (negative), or neutral. Each switch in the circuit has three
positions, On/Off/On, and switches the center contact between the two outer contacts (or in this case,
the positive and negative battery wires).

Figure 3-13. Here you can see a basic H-bridge circuit using two SPDT switches, a DC motor, and a 9v

battery. Notice how the top terminals of each switch share a common positive supply wire, while the

bottom terminals share a common negative supply wire. The center terminals of each switch are used to

route the power signals to the motor terminals.

This method shows the simplicity of a basic H-bridge circuit, but does not provide speed control (it
is either on or off). Although this might be a rugged circuit, its use is limited, so it is usually only good for
testing and educational purposes.

www.it-ebooks.info

CHAPTER 3 LET’S GET MOVING

96

Method 2: DPDT Relay with Simple

This method is wired the same as Method 1, but we combine the two SPDT switches and use one DPDT
Relay, so it can be controlled by the Arduino. Also we can use the Arduino to provide a simple PWM
signal for speed control of the motor (see Figure 3-14). The simplest way to do this is to add a Logic-level
N-channel mosfet (or several in parallel) to control the entire circuit’s path to ground. By using a PWM
signal on the Ground supply to the H-bridge (Relay), we can control the speed of the motor from 0–
100%, whereas the relay switches the motor’s direction. The relay acts as both the High-side and Low-
side switches in the bridge, so there are actually two low-side switches in this configuration—the relay
used to route the power terminals and the N-channel mosfet used to provide the PWM speed control.

This provides complete 0–100% speed control and requires as few as four parts other than the relay:
(2) logic level N-channel mosfets, (1) diode (for relay coil), and (1) small prototyping PCB (or you can
make your own). Depending on the mosfet, you can expect to carry about 10 amperes at 24vdc with no
heatsink or fan; an n-channel logic-level mosfet can be found at Digikey.com for between $0.50–$5.00
each and with an amperage rating from 100mA–200amps. I usually select power mosfets with the highest
amperage rating in my price range (anything above 75 amps), a higher voltage rating than I plan to use in
my project (usually 30v–55v is good), and the lowest possible on-state resistance (check the datasheet for
Rds(On)).

Figure 3-14. A relay-based PWM speed control circuit

We can build this circuit with (2) FQP50N06L N-channel mosfets from Digikey. One mosfet is
needed to provide PWM speed control, and the other mosfet is needed to interface the relay coil to the
Arduino for direction control.

www.it-ebooks.info

CHAPTER 3 LET”S GET MOVING

97

The relay mosfet can be controlled by any Arduino digital output pin, whereas the speed control
mosfet should be controlled by an Arduino PWM output. Next we connect the mosfet Drain pin to the
Relay as shown in Figure 3-14, and the mosfet Source pin to the main Ground supply. The prototyping
PCB makes this easier to put together and you can add screw-terminals for easy wiring. The voltage and
current limits of this circuit are dependent on the mosfet and relay ratings, giving this circuit potential
despite using a mechanical relay switch.

Method 3: P-Channel and N-Channel Mosfets

Moving up, we have a basic solid-state H-bridge that uses P-channel mosfets for the high-side switches
and n-channel mosfets for the low-side switches. This H-bridge has no internal protection against short-
circuit, so you must be careful not to open both switches on the same side of the bridge because this will
result in a shoot-through condition. This design can easily be implemented on a prototyping PCB as well
as adding multiple mosfets in parallel to increase the current capacity. This H-bridge can be built using
only two p-channel power mosfets, two n-channel power mosfets, two n-channel signal mosfets, and a
few resistors (see Figure 3-15).

Figure 3-15. Notice the 10k pull-up resistors on the P-channel mosfets and the 10k pull-down resistors on

the N-channel mosfets. This keeps the mosfets in the off state when not in use.

This method enables for a full solid-state circuit without using any mechanical switches or relays. If
this circuit is operated within the voltage and current limits of the mosfets, it will easily outlast either of
the previous methods. Even though this bridge is more complex than the previous two, it still has
limitations; this design is not optimized for high PWM frequencies or high voltages, but costs little and is
easy to build.

www.it-ebooks.info

CHAPTER 3 LET’S GET MOVING

98

Method 4: N-Channel H-Bridge

Most p-channel mosfets have higher Rds(On) values, lower amperage ratings, and higher prices than
their n-channel counterparts, making it difficult to design a symmetrical H-bridge.

As you might recall, to turn on an n-channel mosfet (logic-level), the Gate pin must be 5v higher
than the Source pin (usually Ground). By connecting an n-channel mosfet backward, we can get it to
conduct as a high-side switch. To do this, we connect the mosfet Drain pin to the Positive voltage supply
and the Source pin to the motor or load. The only catch is that we must now get the Gate pin to be at
least 5v above the Positive supply voltage through boot-strapping.

So how do we make a voltage that is higher than the Positive supply voltage of the batteries? A
charge pump is used to collect voltage through a diode and into a capacitor each time the PWM signal is
cycled. This is called a bootstrap circuit and is effectively a simple voltage doubler used to provide the
mosfet Gates with an elevated voltage level. There are several H-bridge driver ICs that include all of the
circuitry needed for this operation and require only an external capacitor and diode. We use this type of
driver chip to enable the Arduino to control each switch in the H-bridge individually. This type of H-
bridge allows for high current capacity and fast PWM switching speeds, which are useful features for a
robot motor-controller.

For more information about n-channel H-bridges and circuit diagrams, check out the Open Source
Motor Controller (OSMC) project. You can download complete circuits and PCB files, ask questions, or
design your own variation and submit your progress to share with the group.

http://www.robotpower.com/products/osmc_info.html

H-Bridge ICs

To build your own H-bridge, but leave the designing to a professional, you might be interested in an H-
bridge IC. An H-bridge IC is a complete H-bridge circuit that is contained on a tiny integrated circuit
chip. These are usually fitted into a circuit with very few extra components, typically only a few resistors
and a regulated power supply for the logic controls. When using an H-bridge IC, you can usually expect
shoot-through protection, thermal overload protection, and high frequency capabilities. Although these
H-bridge chips are far less likely to be destroyed by user error than a completely homemade design, they
also have much lower power ratings than a homemade H-bridge, typically under 3amps of continuous
current.

There are several H-bridge IC chips that include all four switches and a method of controlling them
safely. The L293D is a Dual H-bridge IC that can handle up to 36 volts and 600 milliamp per motor. The
L298N is a larger version of the L293D that can handle up to 2amps (see Figure 3-16). There are a few ICs
that can control up to 25amps, but they are expensive and hard to find. There are several H-bridge ICs
that work for some of the smaller projects in this book, but the larger bots require a higher powered H-
bridge capable of conducting 10amps or more.

www.it-ebooks.info

CHAPTER 3 LET”S GET MOVING

99

Figure 3-16. Here is the popular L298N dual 2amp H-bridge motor-controller on a homemade PCB. The

other components include a 7805 5v regulator, a few EMF protection diodes, a capacitor, and some

direction LEDs. This board can be used to control the speed and direction of two independent DC motors.

Changing PWM Frequencies

We talked about how higher PWM frequencies eventually lead to switching losses and cross-conduction,
so what is a good PWM frequency to use? If you leave your Arduino alone and don’t change anything, the
PWM outputs will run at 1kHz (pins 5 and 6) and 500Hz (pins 11, 3, 9, and 10). This is considered a
relatively low PWM frequency for motor-controllers because at this frequency, there is an audible
“whine” that you can hear from the motor coils being switched.

Because most motor-controllers can easily handle a 1kHz PWM signal, you might want to leave the
Arduino at its default values. If however, you want your motors to be silent during operation, you must
use a PWM frequency that is above the audible human-hearing range, typically around 24,000Hz
(24kHz). A problem arises because some motor-controllers are not capable of switching at such high
frequency—switching losses increase as the PWM frequency increases. Because it is a difficult design
task, motor-controllers that can operate at silent switching speeds (24kHz or higher) are usually more
expensive and well built.

The frequency of each PWM output pin on the Arduino is controlled by one of three system timers
that are built into the Arduino. Think of each system timer in the Arduino as a digital metronome, that
determines how many beats will be in each second. The value of each timer can be changed using one
line of code and a specific setting selected from Table 3-1.

To change the frequency of a PWM pin, select an available frequency from Table 3-1 and replace the
<setting> in the following code with the appropriate setting from the chart. Then add the following line
of code into the setup() function of your sketch, depending on the timer you want to change:

www.it-ebooks.info

CHAPTER 3 LET’S GET MOVING

100

TCCR0B = TCCR0B & 0b11111000 | <setting>; //Timer 0 (PWM pins 5 & 6)
TCCR1B = TCCR1B & 0b11111000 | <setting>; //Timer 1 (PWM pins 9 & 10)
TCCR2B = TCCR2B & 0b11111000 | <setting>; //Timer 2 (PWM pins 3 & 11)

Table 3-1. Available PWM Frequency Settings for Each Arduino System Timer

Arduino Timer <setting> Divisor Frequency (Hertz)

0 (pins 5 and 6) 0x01 1 62500

0 (pins 5 and 6) 0x02 8 7812.5

0 (pins 5 and 6) 0x03 64 976.56

0 (pins 5 and 6) 0x04 256 244.14

0 (pins 5 and 6) 0x05 1024 61.04

1 (pins 9 and 10) 0x01 1 31250

1 (pins 9 and 10) 0x02 8 3906.25

1 (pins 9 and 10) 0x03 64 488.28

1 (pins 9 and 10) 0x04 256 122.07

1 (pins 9 and 10) 0x05 1024 30.52

2 (pins 3 and 11) 0x01 1 31250

2 (pins 3 and 11) 0x02 8 3906.25

2 (pins 3 and 11) 0x03 32 976.56

2 (pins 3 and 11) 0x04 64 488.28

2 (pins 3 and 11) 0x05 128 244.14

2 (pins 3 and 11) 0x06 256 122.07

2 (pins 3 and 11) 0x07 1024 30.52

This tableTable 3-1 shows the available frequencies with their corresponding settings—you might

notice that some frequencies are available only on certain timers, making each PWM pin unique. For
example, to change the frequency on PWM pins 9 and 10 from the default 500Hz to an ultra-sonic

www.it-ebooks.info

CHAPTER 3 LET”S GET MOVING

101

switching speed of 32kHz, change the setting for system timer 1 in the setup() function, as shown in the
following:

void setup(){
 TCCR1B = TCCR1B & 0b11111000 | 0x01;
}

By changing timer 1 to a setting of “0x01”, PWM pins 9 and 10 will now operate at 32kHz frequency
anytime the analogWrite() command is used on either pin. Alternatively, you can set these same PWM
pins to operate at their lowest available frequency (30Hz) by changing the <setting> to “0x05”.

If you operate the PWM output at a too low of a frequency (below 100Hz), it will significantly
decrease the resolution of the control—that is, a small change in the input will cause a drastic change in
output and changes will appear choppy and not smooth as they do at higher frequencies. If in doubt,
simply stay with the Arduino default PWM frequencies because they are sufficient for most robotics
projects, even if you can hear your motors.

■ Note Changing the Arduino system timer 0 affects the output of certain Arduino timing functions that rely on

timer 0, such as the delay(), millis(), and micros() functions.

Back EMF

Back Electro-Motive Force (Back EMF) is the term used to describe the energy that must be disposed of
when the electro-magnetic field of an inductor collapses. This collapse happens each time the motor is
stopped or changes directions. If the voltage cannot escape through a rectifying diode, it can damage an
unprotected transistor and possibly damage the Arduino pin that is driving it. A simple rectifier diode
(1n4001) works for most relay coils and small BJT transistor-based H-bridges up to 1amp.

A protection diode should be placed between the motor terminal and the power supply. If using an
H-bridge, a diode must be placed between each motor terminal and both the positive and negative
power supply for a total of four diodes (see Figure 3-17). If you have an H-bridge that has no protection
diodes, you can add the diodes directly onto the motor terminals as shown in Figure 3-18.

www.it-ebooks.info

CHAPTER 3 LET’S GET MOVING

102

Figure 3-17. Protection diodes should be placed around the switches to protect them from motor back

EMF, D1–D4 in the image.

Figure 3-18. Notice this implementation of Back-EMF protection diodes, soldered directly onto the motor

terminals—this alleviates the need for diodes built in to the motor-controller.

www.it-ebooks.info

CHAPTER 3 LET”S GET MOVING

103

Current Sensing

Sometimes, the best way to protect a homemade H-bridge is to install a current-sensing device to
monitor the level of amperage that is passing through the H-bridge. By reading the output of a current-
sensor with the Arduino, we can send a stop command to each motor if the current level exceeds a given
point. The over-current protection feature uses current sensing to disable the driver if the power reaches
an unsafe level to protect it from overheating. Using this feature nearly eliminates user errors that can
result in a destroyed motor-controller.

The simplest way to measure the amperage level in an H-bridge is to measure the voltage drop
across a power resistor. This resistor must be placed in series with motor and the positive voltage supply,
and the motor must be powered and running while you are measuring the voltage across the resistor
(see Figure 3-19). Knowing the exact value of the resistor in ohms and the measured voltage across the
resistor, we can use Ohm’s law to calculate the amperage that is passing through the resistor, and
therefore the circuit.

The only problem with this method is that the resistor creates heat in the process (wasting
electricity). For this reason, it is ideal to pick the lowest value resistor possible (0.01–1 ohm) and it must
have a power rating that is sufficient for the amount of current you will pass through it.

Figure 3-19. By measuring the voltage across a current-sensing resistor, we can calculate the amount of

current that a motor is using.

For example, if the voltage drop across a current sensing resistor is 0.5 volts, and the resistor value is
0.05 ohms, how much current is passed through the resistor, and what will the power rating need to be
for the resistor?

First we measure the current through the resistor:

V = I * R

0.5v = I * 0.05 ohms

I = 0.5v / 0.05 ohms

I = 10 amps

www.it-ebooks.info

CHAPTER 3 LET’S GET MOVING

104

If you measure 0.5 volts across a 0.05-ohm current sensing resistor, the amount of current that is
passing through the resistor is 10amps.

Now to calculate the power dissipation of the resistor:

W = I * R

W = (10amps * 10amps) * 0.05 ohms

W = 5 watts

As you can see, the resistor must be rated for 5 watts to be able to handle 10 amperes flowing
through it without failing.

There are better options available for current sensing in an H-bridge, like the hall-effect based ACS-
714 current sensor that can accurately measure up to 30amps in either direction, and outputs a
proportional analog output voltage that can be read using the Arduino. This sensor is mentioned in
Chapter 2 as a non-autonomous sensor. It is available on a breakout board for use with an existing
motor-controller or as an IC that can be soldered directly into a motor-controller design (like the ones
used on the Explorer bot in Chapter 8). With this motor feedback mechanism, we can use the Arduino to
monitor the motor output current and create a custom over-current protection method to keep the
motor-controller from overheating.

Commercial H-Bridges (Motor-Controllers)

If you do not plan to build your own motor-controller, you will still need to decide which one to buy. It is
important to select a motor-controller with a voltage limit that is at least a few volts above your desired
operating voltage, because a fully charged battery is usually a few volts higher than its rating. This is
important because if the maximum voltage limit is exceeded even for a few seconds, it can destroy the
mosfets, which will result in a broken H-bridge. The amperage rating is a bit more forgiving, in that if it is
exceeded the H-bridge will simply heat up. Remember that using a heat sink or cooling fan can increase
the maximum amperage limit by removing the dangerous heat, so many commercial units have
heatsinks or fans built-in to aid in heat dissipation.

A commercial H-bridge can range in price from $10–$500+, but we will assume that you are not
made of money, and focus mainly on the budget motor controllers. Most units accept PWM, Serial, or
R/C pulse signals and some have the capability to read several different signal types using on-board
jumpers to select between modes. You can find units that handle anywhere from 1amp to 150amps of
continuous current and have voltage ratings from 6VDC to 80VDC.

Small (Up to 3amps)

This size H-bridge powers small hobby motors, typically not larger than a prescription medicine bottle.
There are many different H-bridges available from online retailers that can handle several amps and
range in price from $10–$30 (see Table 3-2). The L293D and L298N are two common H-bridge ICs that
many small commercial motor-controllers are based on. The Sparkfun Ardumoto is an Arduino
compatible dual motor-controller shield that is based on a surface mount version of the L298N H-bridge
IC shown in Figure 3-16, and is capable of handling up to 2amps per channel (see Figure 3-20).

www.it-ebooks.info

