
Silicon Temperature Sensors

Designed for use in temperature sensing applications in automotive, consumer and industrial products requiring low cost and high accuracy.

- Precise Temperature Accuracy Over Extreme Temperature MTS102: \pm 2°C from 40°C to +150°C
- Precise Temperature Coefficient
- Fast Thermal Time Constant
 - 3 Seconds Liquid 8 Seconds — Air
- Linear VBE versus Temperature Curve Relationship
- Other Packages Available

MTS102

Pin Number					
1	2	3			
Emitter	Base	Collector			

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Emitter–Base Voltage	V _{EB}	4.0	Vdc
Collector Current — Continuous ⁽⁵⁾	ΙC	100	mAdc
Operating and Storage Junction Temperature Range	T _{J,} T _{stg}	-55 to +150	°C

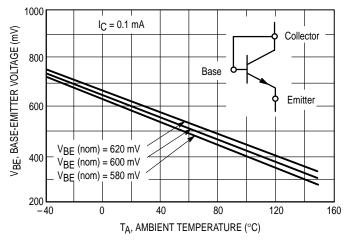


Figure 1. Base–Emitter Voltage versus Ambient Temperature

X-ducer is a trademark of Motorola, Inc.

🕅 MOTOROLA

MTS102 MTS103 MTS105

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Supply Voltage		Vs	-0.2	—	35	Vdc
Output Voltage		Vout	-1.0	—	6.0	Vdc
Output Current		Ι _Ο	_	—	10	mAdc
Emitter–Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)		V _{(BR)EBO}	4.0	—	—	Vdc
Base–Emitter Voltage (I _C = 0.1 mA)		V _{BE}	580	595	620	mV
Base–Emitter Voltage Matching ⁽¹⁾ (I _C = 0.1 mA, T _A = 25°C \pm 0.05°C)	MTS102 MTS103 MTS105	ΔVBE	-3.0 -4.0 -7.0		3.0 4.0 7.0	mV
Temperature Matching Accuracy(2) (T1 = 40°C, T2= +150°C, T _A = 25°C \pm 0.05°C)	MTS102 MTS103 MTS105	ΔΤ	-3.0 -3.0 -5.0		3.0 3.0 5.0	°C
Temperature Coefficient $(3,4)$ (V _{BE} = 595 mV, I _C = 0.1 mA)		TC	-2.28	-2.265	-2.26	mV/°C
Thermal Time Constant Liquid Flowing Air		τ _{TH}		3.0 8.0		s
Dependence of T_C on V_{BE} @ 25°C ⁽⁴⁾ (Figure 3)		$\Delta T_{C} / \Delta V_{BE}$		0.0033	—	mV/°C mV
HERMAL CHARACTERISTICS						
Thermal Resistance, Junction to Ambient		R _{θJA}	_	—	200	°C/W

MECHANICAL CHARACTERISTICS

Weight	_	_	87	_	Grams

NOTES:

1. All devices within any one group or package will be matched for V_{BE} to the tolerance identified in the electrical characteristics table. Each device will be labeled with the mean V_{BE} value for that group.

- 2. All devices within an individual group, as described in Note 1, will track within the specified temperature accuracy. This includes variations in T_C , V_{BE} , and nonlinearity in the range –40 to +150°C. Nonlinearity is typically less than \pm 1°C in this range. (See Figure 4)
- 3. The T_C as defined by a least–square linear regression for V_{BE} versus temperature over the range –40 to +150°C for a nominal V_{BE} of 595 mV at 25°C. For other nominal V_{BE} values the value of the T_C must be adjusted for the dependence of the T_C on V_{BE} (see Note 4).
- 4. For nominal VBE at 25°C other than 595 mV, the T_C must be corrected using the equation T_C = -2.265 + 0.003 (V_{BE} -595) where V_{BE} is in mV and the T_C is in mV/°C. The accuracy of this T_C is typically ± 0.01 mV/°C.

5. For maximum temperature accuracy, IC should not exceed 2 mA. (See Figure 2)

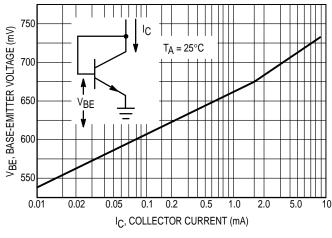
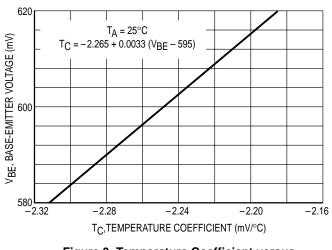



Figure 2. Base–Emitter Voltage versus Collector–Emitter Current

MTS102 MTS103 MTS105

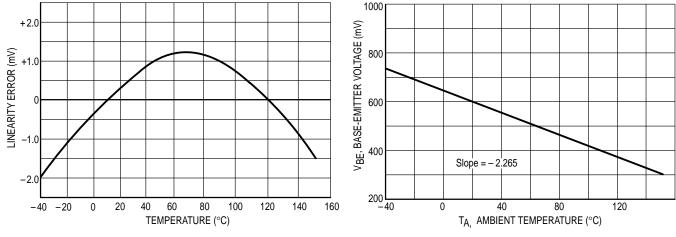
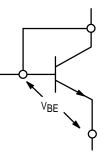



Figure 4. Linearity Error versus Temperature

Figure 5. VBE versus Ambient Temperature

APPLICATIONS INFORMATION

The base and collector leads of the device should be connected together in the operating circuit (pins 2 and 3). They are not internally connected.

The following example describes how to determine the V_{BE} versus temperature relationship for a typical shipment of various V_{BE} groups.

EXAMPLE:

Given — Customer receives a shipment of MTS102 devices. The shipment consists of three groups of different nominal V_{BE} values.

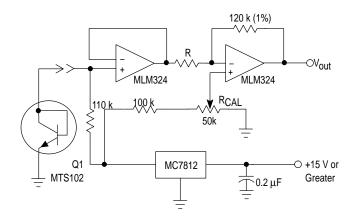
Group 1: V_{BE} (nom) = 595 mV

Group 2: V_{BE} (nom) = 580 mV

Group 3: V_{BE} (nom) = 620 mV

 $\label{eq:Find} \text{Find} - \text{V}_{\text{BE}} \text{ versus temperature Relationship}.$

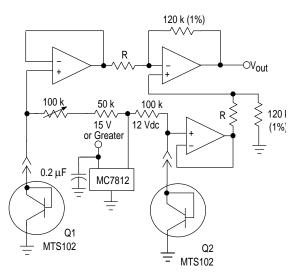
- 1. Determine value of T_C:
 - a. If V_{BE} (nom) = 595 mV, T_{C} = -2.265 mV/°C from the Electrical Characteristics table.
 - b. If VBE (nom) is less than or greater than 595 mV determine T_C from the relationship described in Note 4.
 - $T_C = -2.265 + 0.0033$ (V_{BE} 595) or see Figure 3.


2. Determine the V_{BE} value at extremes, – 40°C and +150°C:

 $V_{BE(T_A)} = V_{BE}(25^{\circ}C) + (T_C)(T_A - 25^{\circ}C)$ where $V_{BE(T_A)} =$ value of V_{BE} at desired temperature.

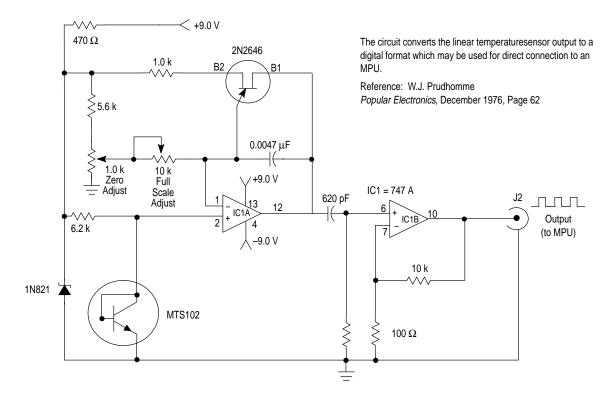
- Plot the V_{BE} versus T_A curve using two V_{BE} values: V_{BE} (- 40°C), V_{BE}(25°C), or V_{BE}(+150°C)
- 4. Given any measured V_{BE}, the value of T_A (to the accuracy value specified: MTS102 \pm 2°C, MTS103 \pm 35°C, MTS105 \pm 5°C) can be read from Figure 5 or calculated from equation 2.
- 5. Higher temperature accuracies can be achieved if the collector current, I_C, is controlled to react in accordance with and to compensate for the linearity error. Using this concept, practical circuits have been built in which allow these sensors to yield accuracies within $\pm 0.1^{\circ}$ C and $\pm 0.01^{\circ}$ C.

Reference: "Transistors–A Hot Tip for Accurate Temperature Sensing," Pat O'Neil and Carl Derrington, *Electronics 1979.*


TYPICAL CIRCUITS

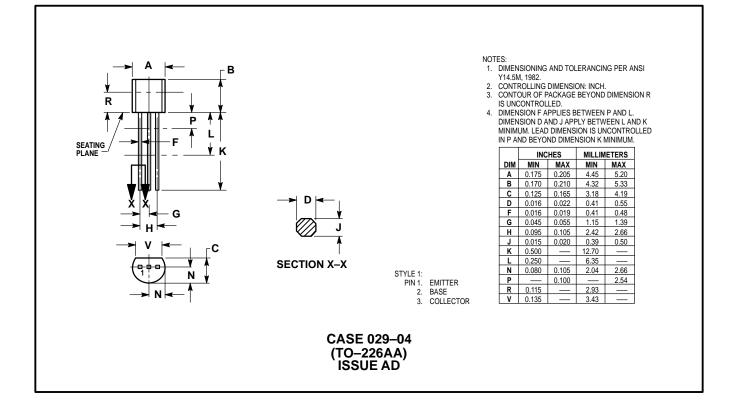
NOTE: With Q1 at a known temperature, adjust R_{CAL} to set output voltage to V_{OUt} = TEMP x 10 mV, Output of MTS102, 3, 5 is then converted to V_{OUt} = 10 mV/ $^{\circ}$ – ($^{\circ}F$, $^{\circ}C$ or $^{\circ}K$)

R = 27 k Ω (1%) for °C or °K



NOTE: With Q1 and Q2 at identical temperature, adjust R_{CAL} for V_{Out} = 0.000 V

R = 15 k\Omega (1%) for $^\circ F$


Figure 7. Differential Temperature Measurement 0 To 150°C

All resistors are 10% 1/4 watt except 6.2 k which is 5% 1/4 watt.

Figure 8. Temperature Sensor to Digital MPU Circuit

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and its affirest with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and its an eregistered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

 \Diamond