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This is an overview of what metastability is, ways of interpreting 
it, the issues concerning it and the remedies suggested. I have 
mentioned all the references that I have gone through. 
 
Also note that, keeping in mind the purview of EE552, in this 
report, I have tried to provide the logic design perspective of 
metastability rather than the circuit level design viewpoint. This 
could be a potential additional reading assignment to the 
metastability material provided in the class. The class material is 
not covered here to avoid repetition.  
 
Moreover, I would like to mention that I have compiled this report 
in personal capacity and have not taken any assistance from 
anyone. I give full permission for this report to be posted on the 
class web-site. 
 
 
        Ashirwad Bahukhandi 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



INTRODUCTION 
 
As system designers continue to push the upper bound of performance, understanding the 
metastability operation of flip-flops is important to reliability. Good synchronous design 
practice or careful evaluation of device characteristics can achieve high reliability. As the 
speed of designs increases to 50 MHz and above, it’s quite understandable that the design 
is hard pressed to meet the timing requirements. All sequential components in a design 
have to satisfy certain minimal timing requirement for data arrival to ensure a good logic 
1 or a good logic 0. The data should arrive a minimum time before the active edge of the 
clock (and remain stable) for the clock to latch a valid logic of the data (setup time) and 
similarly this data should also remain stable for a minimum specified time after the active 
edge of the clock (hold time). These specs vary according to logic device. Any violation 
of these timing requirements may lead to erroneous data being latched. So it’s not 
surprising that our everyday simple digital designs can be marred with timing errors. 
These errors are so subtle that we more often than not tend to ignore them. However, they 
make the nets in our design candidates of a potential disaster. The frequency of these 
timing mis-matches is so small; we call them “glitches” and generally dismiss them out 
of hand. Since at the occurrence of these violations, the data in the flip-flop is unknown, 
this condition is called "metastability", and is clearly a profound issue and good designers 
pay due importance to this.  
 
Once the flip-flop has entered the metastable state, the probability that it will still be 
metastable some time later has been shown to be an exponentially decreasing function. 
Because of this property, a designer can simply wait for some added time after the 
specified propagation delay before sampling the flip-flop output so that he can be assured 
that the likelihood of metastable failure is remote enough to be tolerable. On the other 
hand, one consequence of this is that there is some probability (albeit vanishingly small) 
that the device will remain in a metastable state forever. The designer needs to know the 
characteristics of metastability so that he can determine how long he must wait to achieve 
his design goals. 
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WHAT IS METASTABILITY? 
 
Metastability in digital systems occurs when two asynchronous signals combine in such a 
way that their resulting output goes to an indeterminate state. A common example is the 
case of data violating the setup and hold specifications of a latch or a flip-flop. In an ideal 
world, where all logic designs are synchronous and all inputs are tied to the system clock, 
metastability would not be a concern because all timing conditions for the flip-flops 
would be met. However, in most of the design, the data is asynchronous w.r.t. the clock 
making the flop a potential candidate for metastability as there’s no reasonable way to 
insure that the changing asynchronous data will meet the flop’s setup time. Occasionally 
– not often - the latched data will be corrupt. So the designer has to take care of these 
violations. 
  
The duration of the metastable condition is a probabilistic phenomenon, and therefore 
there is no guaranteed maximum time. One can't build a bistable device such as a flip-
flop that cannot go metastable.  
Metastability can appear as a flip-flop that switches late or doesn’t switch at all. It can 
present a brief pulse at a flip-flop output (called a runt pulse) or cause flip-flop output 
oscillations. Any of these conditions can cause system failures. 
 

 
[13] 
For a simple CMOS latch, valid data must be present on the input for a specified period 
of time before the clock signal arrives (setup time) and must remain valid for a specified 
period of time after the clock transition (hold time) to assure that the output functions 
predictably. This leaves a small window of time with respect to the clock (t 0 ) during 
which the data is not allowed to change. If a data edge occurs within this aperture, the 
output may go to an intermediate level and remain there for an indefinite amount of time 
before resolving itself either high or low, as illustrated in Figure 3. 
 
This metastable event can cause a failure only if the output has not resolved itself by the 
time that it must be valid for use (for example, as an input to another stage); therefore, the 
amount of resolve time allowed a device plays a large role in calculating its failure rate. 
Whenever there is any such violation, the output voltage is anywhere between a logic 
high and a logic zero. In such a condition the flip-flop takes additional time to settle to a 
stable output. And this stable output depends upon the process technology, manufacture 



and environment conditions that may force the output to go to a particular value. There is 
no way that the final state can be predicted. 

 
 
     Fig 3 [4] 
 
This operation is analogous to a ball rolling over a hill (Fig 4). Each side of the hill 
represents a stable state, and the top of the hill represents the metastable state. Whenever 
the flip-flop satisfies the setup and hold timings, the output achieves a stable state (either 
1 or 0). However, when ever there is any violation, the correct data might not be latched 
(either at the slave part or the master part of the f/f) as the f/f is marginally triggered and 
the time required for the proper propagation of the data through the f/f is not met and the 
output is metastable. This is analogous to the ball at the top of the mountain in theory; a 
flip-flop in this quasi-stable hilltop state could remain there indefinitely – but in reality it 
won't. Just as the slightest air current would eventually cause a ball on the illustrated hill 
to roll down one side or the other, thermal and induced noise will jostle the state of the 
flip-flop causing it to move from the quasi-stable state into either the logic 0 or logic 1 
state. Hence, the output is random. In any case the CP-Q delay of the f/f is increased. The 
extra delay may be ten or twenty times longer than the normal clk-Q delay. This extra 
time is called the metastable resolution time. However, metastability may not always 
result in unpredictable output. If provided sufficient time with proper excitation, the f/f 
can infact settle to a stable state. But in the post GHz designs, time is at a premium, so the 
occurrence of the metastability itself has to be taken care of. 
 
` 
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             Fig. 4 

In other words, in a device, two stable equilibrium states are potential-energy minimums. 
Between the two minimums is a potential-energy maximum (analogous to a hill). 



Because the slope of the energy curve is 0 at the maximum, the maximum is also an 
equilibrium state, although an unstable one.  
 
Metastable events are associated with data transitions occurring close to the active edge 
of the clock. Figure 3 shows an example of data changing within a timing window that 
will result in a timing violation. Because a timing violation has occurred, the flip-flop 
will exhibit erratic behavior. The erratic behavior manifests itself in the form of an 
extended propagation delay with an unpredictable resolution of the Q output (of f/f). This 
metastable event can cause a failure only if the output has not resolved itself by the time 
that it must be valid for use (e.g. as an input the another stage); therefore, the amount of 
resolve time allowed for a device plays a large role in calculating its failure rate. 
 
WHAT ARE THE CASES, WHEN METASTABILITY OCCURS? 
 
As we have seen that whenever setup and hold violation time occurs, metastability 
occurs, so it is to be seen when does this signal violate this timing requirement. [9] 
 

• When the input signal is a asynchronous signal  
• When the clock skew is more (rise time and fall time is more then the tolerable 

values).  
• When interfacing two domains operating at two different frequency.  
• When the combinational delay is such way that, it changes flip-flop’s input in the 

required window (setup + hold window)  
 
HOW IS METASTABILITY DESCRIBED? 
 
In order to define the metastability characteristics of a device, three things must be 
known: first, what is the likelihood that the device will enter a metastable state? This 
propensity is defined by the parameter “To ”. Second, once the device is in a metastable 
state, how long would it be expected to remain in that state? This parameter is T and is 
simply the exponential time constant of the decay rate of the metastability. It is 
sometimes called the metastability time constant. The final parameter is the measured 
propagation delay of the device. 
 
Because metastability formulas aren’t standardized, one has to read application notes 
carefully to understand the manufacturer’s definition of each parameter. Metastability is 
typically described by four measurements of flip-flop performance — MTBF, T, To and 
tr. MTBF is the “mean-time-between-failure” of a flip-flop.  

 
where tr is metastability resolution time, maximum time the output can remain metastable 
without causing synchronizer failure. T and T0 are constants that depend on the electrical 
characteristics, process technology and the internal design of the flip-flop, ftn is the 
frequency of the asynchronous input and fclock is the frequency of the sampling clock. 



 
The exponential term in the equation describes the probability that a metastable condition 
will last for time t’. As one increases time t’ that one waits before looking at a f/f’s 
output, the likelihood of seeing unresolved metastability is exponentially decreased. As 
seen from the expression, MTBF is MTBF is inversely proportional to the clock rate 
(fclock) and the data rate (ftn). In designs having asynchronous data, most designers do not 
know their data rate, so it is difficult to estimate the MTBF accurately. Usually, a small 
time period is considered (10 seconds, for example) and the number of clocks and data 
transitions during the small time is used to define fclock and ftn. As the time delay is 
increased, the number of failures decreases dramatically. By counting the number of 
failures over time, MTBF can be directly calculated. The values are derived by a formula 
that includes counts of the number of failures and the time delays for sampling. 
 
These are determined by plotting the natural log of MTBF versus tres and performing a 
linear regression analysis on the data. The y-intercept and slope of the resulting line 
determines the values of To and T. Their formulae are as follows: 
 

 
 
This method of computing MTFB and in-fact metastabilty has long been used in the 
industry. 
 
HOW TO MINIMIZE METASTABILITY? 
 
In the simplest case, designers can tolerate metastability by making sure the clock period 
is long enough to allow for the resolution of quasi-stable states as well as whatever logic 
may be in the path to the next flip-flop. This approach, while simple, is rarely practical 
given the performance requirements of most modern designs. 
The following few methods are used to avoid metastability: 
 
1. Synchronize any asynchronous input through one path that has at least one and 

preferably two flip-flops in series. The flip-flops should be running on the same edge 
of your system clock as the rest of the circuit. This will limit the area of potential 
problems to one path instead of several, and minimize the possibility of metastability 
entering the main part of the circuit. Use buffered flip-flops, or un-buffered flip-flops 
with minimum load. The second flop's output will be correct after two clocks, since 
the odds of two metastable events occurring back-to-back is almost nil. In a practical 
circuit, cascading two flip-flops practically squares the probability of failure. With 
two flip-flops, and at reasonable data rates, errors occur millions or even billions of 
years apart. Good enough for most systems. But “correct” means the second stage's 
output will not be metastable: it's not oscillating, nor is it at an illegal voltage level. 



There's still an equal chance the value will be in either legal logic state. Thus, this is a 
very powerful technique. [8] 

 

 
 
                       Fig. 5 Synchronizer 
 
   

 
 
 
    Fig. 6 Synchronizing an asynchronizing input 
 
 
2. Design any state machines whose operation is affected by these “synchronized” 

signals to follow a gray code pattern between states controlled by these signals. Gray 



Code is a counting scheme where only a single bit changes between numbers, as 
follows:  

 
000 
001 
011 
010 
110 
111 
101 
100 

 
Gray code makes sense if, and only if, your code reads the device faster than it is 
likely to change, and if the changes happen in a fairly predictable fashion-like 
counting up. Then there's no real chance of more than a single bit changing between 
reads; if the inputs go metastable, only one bit will be wrong. The result will still be 
reasonable.  This will prevent the state machine from “taking off” to unwanted states 
should the synchronizing flip-flops be metastable. [3] 

 
3. As mentioned earlier, ensure that setup time of the destination flip-flop is met. This 

will avoid the creation of metastable conditions inside the circuit and minimize the 
propagation of any should they occur.  

 
4. Compute a parity or checksum of the input data before the capture register. Latch that 

into the register as well. Have the code compute parity and compare it to that read. If 
there's an error, do another read. [3] 

 
5. Use metastability hardened Flip-flops (Their explanation is beyond the scope of this 

report). [11] 
 
Some designs will never have a metastability problem. It always stems from violating set-
up or hold times, which in turn comes from either poor design or asynchronous inputs. 
All of this discussion has revolved around asynchronous inputs, when the clock and data 
are unrelated in time. Be wary of anything not slaved to the clock e.g. interrupts in CPUs 
are not synchronous to processor clock. Be sure that these signal itself and the vector-
generating logic, don't violate the processor's set-up and hold times.  
 
Bad design, though, can plague any electronic system. Every logic component takes time 
to propagate data. When a signal traverses many devices, the delays can add up 
significantly. If the data then goes to a latch, it's quite possible that the delays may cause 
the input to transition at the same time as the clock. Instant metastability. Designers are 
generally pretty careful to avoid these situations, though. 
 
By following these few precautions, the circuit will be resistant to the effects of 
metastability and more reliable. 
 



 
EVEN AFTER ALL THIS METASTABILITY MIGHT BE REQUIRED!!! 
 
There are instances when metastability might be required. A few cases are enlisted as 
follows: [2] 

 
• Laboratory investigation of the metastable phenomenon in flip-flops  
• Demonstration of quantum principles in introductory physics lab  
• Development of solid-state random number generators  
• Use of random number generator circuitry to produce multi-latches with mutually 

entangled metastable states from which one could build solid- state quantum ALUs 
 
CONCLUSION 
 
Metastability is unavoidable in asynchronous systems but careful attention to design can 
usually prevent the problem of violating setup and hold times. The metastability 
characteristics of a device depend upon the process technology used for its design and the 
environmental conditions. They have become increasingly prevalent at higher operating 
frequencies. When higher frequencies are used, extreme care must be taken to ensure that 
system reliability is not adversely affected due to inadequate synchronization methods. 
Various semiconductor companies employ different methods to tackle the problems 
arising due to metastability, few of which have been discussed. No matter what method is 
used, these failures must be accounted for in the design of asynchronous digital circuits.  
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