INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

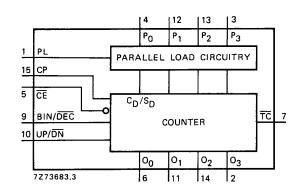
HEF4029B MSI

Synchronous up/down counter, binary/decade counter

Product specification
File under Integrated Circuits, IC04

January 1995

Synchronous up/down counter, binary/decade counter


HEF4029B MSI

SYNCHRONOUS UP/DOWN COUNTER. BINARY/DECADE COUNTER

The HEF4029B is a synchronous edge-triggered up/down 4-bit binary/BCD decade counter with a clock input (CP), an active LOW count enable input (\overline{CE}), an up/down control input (UP/ \overline{DN}), a binary/decade control input (BIN/DEC), an overriding asynchronous active HIGH parallel load input (PL), four parallel data inputs (Pn to P3), four parallel buffered outputs (On to O3) and an active LOW terminal count output (TC).

Information on Po to P3 is asynchronously loaded into the counter while PL is HIGH, independent of CP.

The counter is advanced one count on the LOW to HIGH transition of CP when CE and PL are LOW. The TC signal is normally HIGH and goes LOW when the counter reaches its maximum count in the UP mode, or the minimum count in the DOWN mode provided \overline{CE} is LOW.

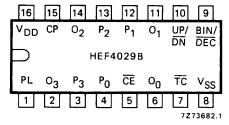


Fig. 2 Pinning diagram.

Fig. 1 Functional diagram.

HEF4029BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4029BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

PLparallel load input

PINNING

CE

HEF4029BT(D): 16-lead SO; plastic

Po to P3 parallel data inputs (SOT109-1)

BIN/DEC binary/decade control input (): Package Designator North America

UP/DN up/down control input

count enable input (active LOW)

CP clock input (LOW to HIGH, edge triggered)

O₀ to O₃ buffered parallel outputs

TC terminal count output (active LOW)

FAMILY DATA see Family Specifications IDD LIMITS category MSI

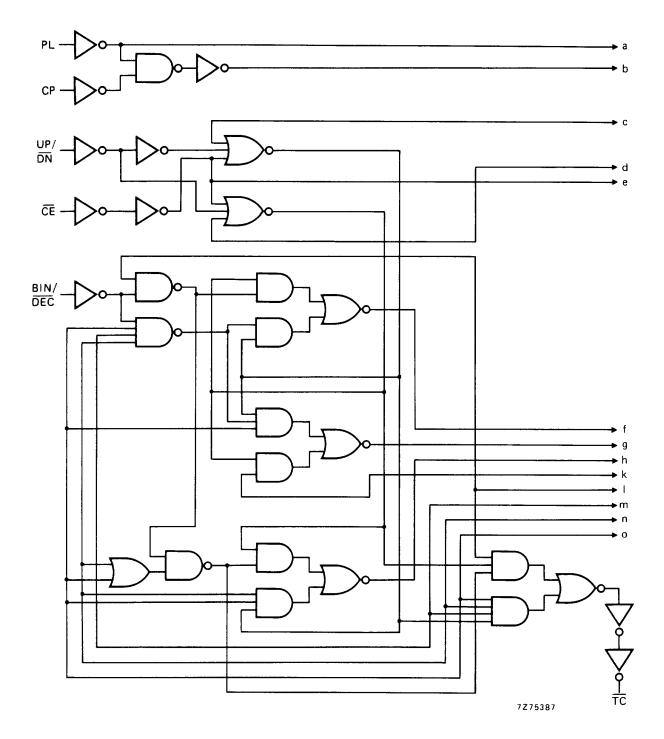


Fig. 3a Logic diagram (continued in Fig. 3b).

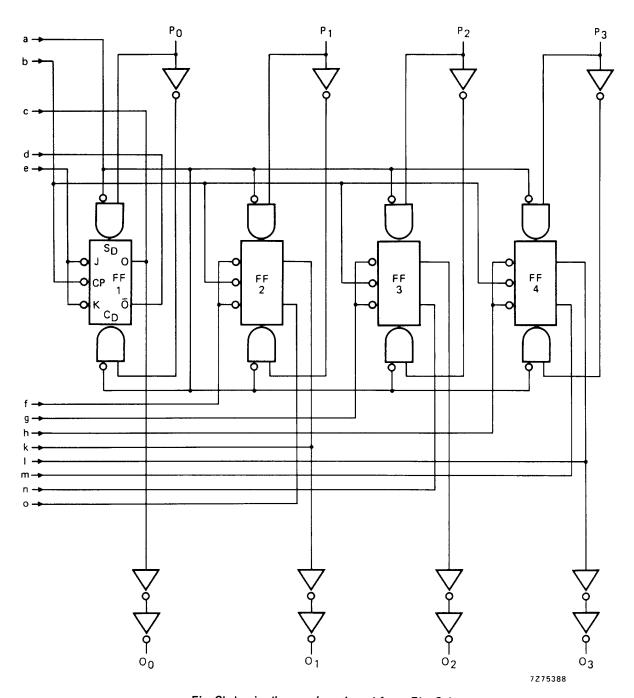


Fig. 3b Logic diagram (continued from Fig. 3a).

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

FUNCTION TABLE

PL	BIN/DEC	UP/DN	CE	СР	mode
H L L L	X X L H H	X X L H L	X H L L	X X 5 5	parallel load (P _n → O _n) no change count-down, decade count-up, decade count-down, binary count-up, binary

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

f = positive-going clock pulse edge

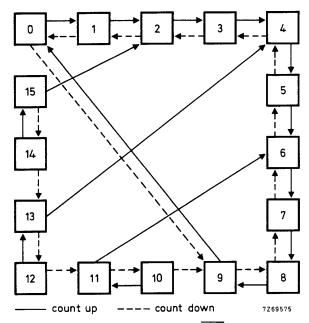


Fig. 4 State diagram; $BIN/\overline{DEC} = LOW$.

Fig. 5 State diagram; BIN/DEC = HIGH.

Logic equation for terminal count:

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; input transition times $\leq 20 \text{ ns}$

	V _{DD} V	typical formula for P (μW)	where f_i = input freq. (MHz) f_O = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_OC_L)$ = sum of outputs V_{DD} = supply voltage (V)
Dynamic power dissipation per package (P)	5 10 15	1000 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 4500 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 11 500 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	symbol	min.	typ.	max.		typical extrapolation formula
Propagation delays							
CP → O _n	5			145	290	ns	118 ns + (0,55 ns/pF) C ₁
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) CL
	15			40	75	ns	32 ns + (0,16 ns/pF) C
	5			160	315	ns	133 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	tPLH		60	120	ns	49 ns + (0,23 ns/pF) C
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
CP → TC	5			280	560	ns	253 ns + (0,55 ns/pF) CL
HIGH to LOW	·- 10	tPHL		105	205	ns	94 ns + (0,23 ns/pF) CL
	15			70	140	ns	62 ns + (0,16 ns/pF) CL
	5			195	385	ns	168 ns + (0,55 ns/pF) Cլ
LOW to HIGH	10	^t PLH		75	150	ns	64 ns + (0,23 ns/pF) CL
	15			55	105	ns	47 ns + (0,16 ns/pF) Cլ
PL → O _n	5			120	240	ns	93 ns + (0,55 ns/pF) Cլ
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) CL
	5			170	335	ns	143 ns + (0,55 ns/pF) Cլ
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns + (0,23 ns/pF) Cլ
	15			45	90	ns	37 ns + (0,16 ns/pF) C _L
CE → TC	5			180	360	ns	153 ns + (0,55 ns/pF) Cլ
HIGH to LOW	10	^t PHL		70	140	ns	59 ns + (0,23 ns/pF) CL
	15			50	100	ns	42 ns + (0,16 ns/pF) Cլ
	5			170	335	ns	143 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65 50	135	ns	54 ns + (0,23 ns/pF) CL
	15	}		50	100	ns	42 ns + (0,16 ns/pF) Cլ
Output transition	_			00	100		10 1/10 /- 5\0
times	5			60 30	120	ns	10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L
HIGH to LOW	10 15	^t THL		30 20	60 40	ns ns	9 ns + (0,42 ns/pF) C ₁ 6 ns + (0,28 ns/pF) C ₁
	!						· · · · ·
LOW AS THOU	5			60	120 60	ns	10 ns + (1,0 ns/pF) Cլ 9 ns + (0,42 ns/pF) Cլ
LOW to HIGH	10 15	^t TLH		30 20	40	ns ns	9 ns + (0,42 ns/pF) C ₁ 6 ns + (0,28 ns/pF) C ₁
	10	<u> </u>		20		113	0 113 1 (0,20 113/p) / C[

HEF4029B MSI

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	symbol	min	typ	max		
Minimum clock pulse width; LOW	5 10 15	^t WCPL	110 35 25	55 20 15	ns ns ns		
Minimum PL pulse width; HIGH	5 10 15	tWPLH	160 55 35	80 25 15	ns ns ns		
Recovery time for PL	5 10 15	tRPL	150 50 35	75 25 20	ns ns ns		
Set-up times BIN/DEC → CP	5 10 15	t _{su}	270 90 60	135 45 30	ns ns ns	see also waveforms Figs 6 and 7	
UP/ DN → CP	5 10 15	t _{su}	300 105 75	150 55 35	ns ns ns		
CE → CP	5 10 15	t _{su}	240 90 70	120 50 40	ns ns ns		
P _n → PL	5 10 15	t _{su}	70 20 10	35 10 5	ns ns ns		
Hold times BIN/DEC → CP	5 10 15	^t hold	45 15 10	90 30 20	ns ns ns		
UP/ DN ─► CP	5 10 15	[†] hold	15 0 5	-135 -50 -35	ns ns ns		
CE → CP	5 10 15	^t hold	30 10 5	30 10 10	ns ns ns		
P _n → PL	5 10 15	^t hold	15 0 0	-20 -10 -5	ns ns ns		
Maximum clock pulse frequency	5 10 15	f _{max}	2 5 8	4 10 15	MHz MHz MHz		

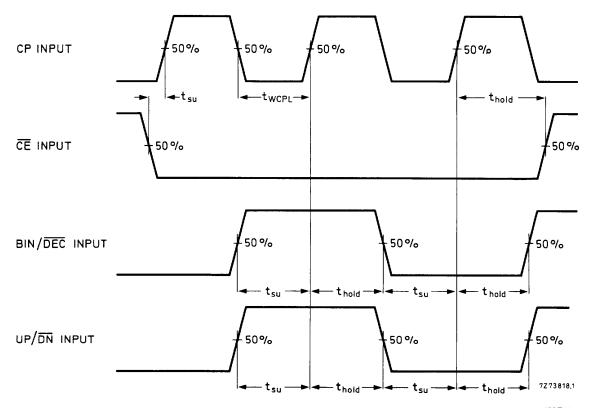


Fig. 6 Waveforms showing minimum pulse width for CP, set-up and hold times for $\overline{\text{CE}}$ to CP, BIN/DEC to CP and UP/ $\overline{\text{DN}}$ to CP. Set-up and hold times are shown as positive values but may be specified as negative values.

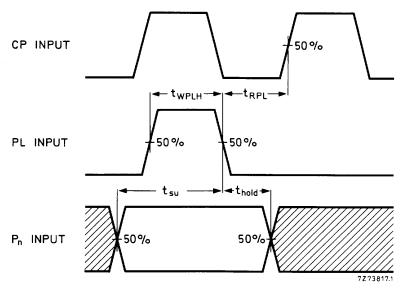


Fig. 7 Waveforms showing minimum pulse width for PL, recovery time for PL, and set-up and hold times for P_n to PL. Set-up and hold times are shown as positive values but may be specified as negative values.

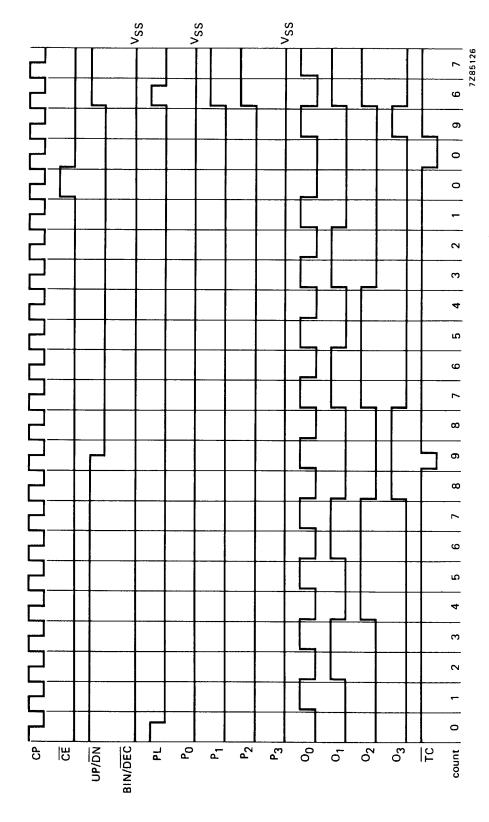
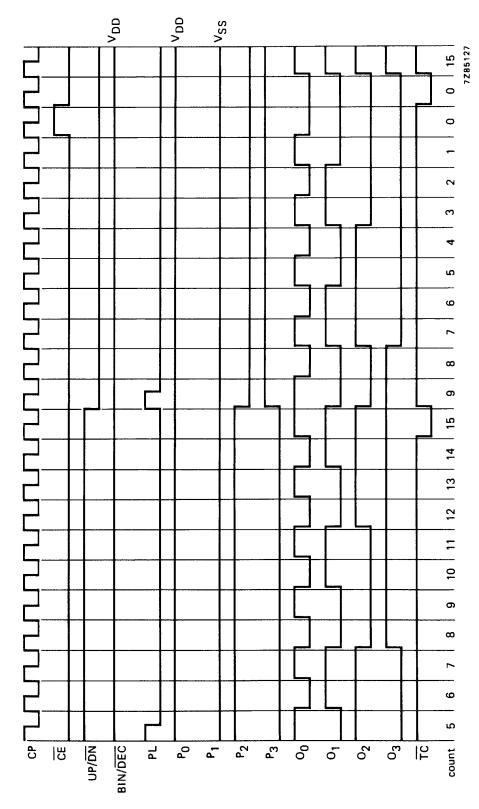
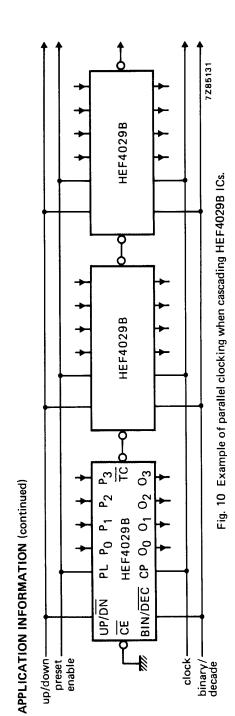
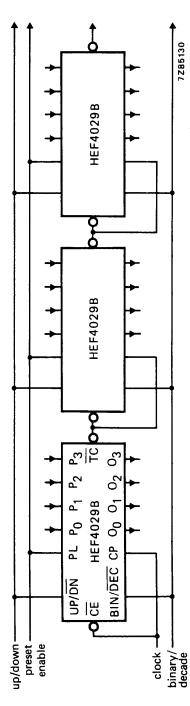


Fig. 8 Timing diagram; decade mode; $P_0 = LOW$; $P_3 = LOW$; BIN/ $\overline{DEC} = LOW$.


Fig. 9 Timing diagram; binary mode; $P_0 = HIGH$; $P_1 = LOW$; BIN/DEC = HIGH.

APPLICATION INFORMATION

Some examples of applications for the HEF4029B are:

- Programmable binary and decade counting/frequency synthesizers BCD output.
- Analogue-to-digital and digital-to-analogue conversion.
- Up/down binary counting.
- Magnitude and sign generation.
- Up/down decade counting.
- Difference counting.

changed at any count; the only restriction on changing the up/down control is that the clock input to the first counting Fig. 11 Example of ripple clocking when cascading HEF4029B ICs. Ripple clocking mode: the up/down control can be stage must be HIGH.

negative-going glitches do not affect proper HEF4029B operation; however if the TC signals are used to trigger other edge-sensitive logic devices, TC lines at all stages after the first may have a negative-going glitch pulse resulting from differential delays of different HEF4029B ICs. These such as flip-flops or counters, the TC signals should be gated with the clock signal using a 2-input OR gate such as HEF4071B.